skip to main content


Search for: All records

Creators/Authors contains: "Gilbert, Matthew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nonreciprocal superconducting devices have attracted growing interest in recent years as they potentially enable directional charge transport for applications in superconducting quantum circuits. Specifically, the superconducting diode effect has been explored in two-terminal devices that exhibit superconducting transport in one current direction while showing dissipative transport in the opposite direction. Here, we exploit multiterminal Josephson junctions (MTJJs) to engineer magnetic-field-free nonreciprocity in multiport networks. We show that when treated as a two-port electrical network, a three terminal Josephson junction (JJ) with an asymmetric graphene region exhibits reconfigurable two-port nonreciprocity. We observe nonreciprocal (reciprocal) transport between superconducting terminals with broken (preserved) spatial mirror symmetry. We explain our observations by considering a circuit network of JJs with different critical currents. 
    more » « less
    Free, publicly-accessible full text available March 8, 2025
  2. Abstract

    The confluence between high-energy physics and condensed matter has produced groundbreaking results via unexpected connections between the two traditionally disparate areas. In this work, we elucidate additional connectivity between high-energy and condensed matter physics by examining the interplay between spin-orbit interactions and local symmetry-breaking magnetic order in the magnetotransport of thin-film magnetic semimetal FeRh. We show that the change in sign of the normalized longitudinal magnetoresistance observed as a function of increasing in-plane magnetic field results from changes in the Fermi surface morphology. We demonstrate that the geometric distortions in the Fermi surface morphology are more clearly understood via the presence of pseudogravitational fields in the low-energy theory. The pseudogravitational connection provides additional insights into the origins of a ubiquitous phenomenon observed in many common magnetic materials and points to an alternative methodology for understanding phenomena in locally-ordered materials with strong spin-orbit interactions.

     
    more » « less
  3. null (Ed.)
    Abstract Within the broad and deep field of topological materials, there are an ever-increasing number of materials that harbor topological phases. While condensed matter physics continues to probe the exotic physical properties resulting from the existence of topological phases in new materials, there exists a suite of “well-known” topological materials in which the physical properties are well-characterized, such as Bi 2 Se 3 and Bi 2 Te 3 . In this context, it is then appropriate to ask if the unique properties of well-explored topological materials may have a role to play in applications that form the basis of a new paradigm in information processing devices and architectures. To accomplish such a transition from physical novelty to application based material, the potential of topological materials must be disseminated beyond the reach of condensed matter to engender interest in diverse areas such as: electrical engineering, materials science, and applied physics. Accordingly, in this review, we assess the state of current electronic device applications and contemplate the future prospects of topological materials from an applied perspective. More specifically, we will review the application of topological materials to the general areas of electronic and magnetic device technologies with the goal of elucidating the potential utility of well-characterized topological materials in future information processing applications. 
    more » « less